Binocular Dissecting Microscopes

The advances in stereo vision were not restricted to stereo viewers. They were extended to the development of binocular microscopes including examples by Riddell, Stephenson, and Wenham, among others.

One of the smallest and least complex of the early simple stereo microscopes was the Collins' Lawson Binocular Dissecting Microscope, although not the first chronologically. [Turner (Turner, 1989), incorrectly, identifies it as a Collin's Lawson Binocular Microscope (Author: note the placement of Turner's apostrophe).]

This is described by Hogg (Hogg, 1867), and pictured there as Fig. 52 (Fig. 22 here).

This instrument is intended to supply a want, often felt in anatomical and botanical investigations, when only a moderate magnifying power is required.

In consequence of using both eyes it can be worked with for a length of time with great comfort. A large range of field is obtained, and plenty of room for working. It consists of a neat oblong French-polished mahogany box, measuring, when closed, 6 in. by 4 in., fig. 52. The top and front let down by hinges, and on the inside of them are fitted the scissors, needles, and knives necessary for dissecting. The two sides draw out about six inches, and are hollowed out so as to serve as rests for the hands. The magnification is obtained by two lenses mounted in the eye-pieces, as represented in the diagram, and may be adjusted to the focus by a sliding bar. These show the object beautifully in relief. Beneath is a gutta-percha trough or stage, to pin the object down to, which can be filled with water if required. Under this is the mirror for transparent illumination, and the light from it is passed through a circle of glass in the centre of the trough.
Fig. 23 shows an example of this model dissecting microscope, in a "French-polished mahogany" box, as described in Hogg. This example and the one in Turner (Turner, 1989), do not include a below stage mirror. It is possible these mirrors were options, but it is more likely they were lost over time. There is a substage fitting that allows for a mirror's attachment.

An unsigned example of the same design, but with an oak-wood frame, is attributed to Collins and described by Turner (Turner, 1989). It is shown in Fig. 300 of Turner's 1989 book, and identified as manufactured by Collins c. 1870. A similar Collins dissecting microscope is also presented in the Science Museum's disk catalog (Bracegirdle, 2005) as item 11/26, and called a "Lawson Dissecting Microscope by Collins". That example, unlike the one described in Hogg or presented here, is also made of oak with a Collins label pasted on, unlike the signed example here. The Science Museum microscope does have a substage mirror but is missing the stage, which the catalog states would be of "opal glass". It identifies Lawson as a St. Mary's Hospital Professor of Histology.

This simple binocular dissecting microscope was made before Collins' Wenham binocular, and some decades before Zeiss' first compound stereo Greenough microscope. both discussed later in this paper.
Figure 23. Collins’ Lawson binocular dissecting microscope
Stereo Microscopy

Designs of Prof. John Leonard Riddell of New Orleans, USA

Wheatsone's publication (Wheatsone, 1838) and his subsequent work influenced researchers in England and the US to explore the development of stereo compound microscope. The first functional compound stereomicroscope was made in the U.S. by J(ulius) & W(illiam) Grunow according to Prof. J. L. Riddell's design, c. 1853. Riddell had likely been influenced, directly or indirectly, by Wheatsone's work.

The two Grunows were brothers, and were joined briefly by a third brother Charles. The formal designation "Grunow Bros." was used only briefly as the company name. (Over time, the brothers went their separate ways.) The Grunows were known for the quality of their instruments, which compared favorably to those of British manufactures. The Riddell microscope, and the design of its prisms is shown in Figs. 24 and 25. An example of Riddell's microscope can be found in the Billings collection, Fig. 257 (Purtle, 1987).

The description in Billings describes the Riddell microscope in their collection as 16 inches tall, and it includes the inscription "Invented by Prof. J. L. Riddell, University of Louisiana, Made by the Grunow Bros. New Haven, Conn".

One of the interesting features of the original Riddell microscope is its use of two substage mirrors, i.e., two light sources to illuminate each of the microscopes independently. This dual illumination feature would continue to be used. For example, it is used in conjunction with stereomicroscopes made by both Vickers and Watson, and of necessity in the Bausch & Lomb Stereo 240 microscope designed for photo interpretation. These examples are later discussed in this paper.

The prisms atop each eyepiece tube in Fig. 24 not only negate the need to look directly down into the eyepiece tubes but are also used to produce a normal orientation of the image. They vertically erect the images, which were corrected horizontally by the lower set of prisms. The final result, for the user, are images where movements at the stage is shown correctly and not inverted. That is, movement to the right is shown as movement to the right, and movement upward is shown as movement upward. (Ferraglio, 2008).

The Riddell microscope in Fig. 24 uses two independent light paths through a common relatively small objective using prisms above that objective to divide the circle of rays coming through the objective into two eyepieces.
Figure 24. A representation of Riddell's original microscope, slightly software enhanced, by the author (Carpenter, 1901)

Figure 25. Riddell's Trapezoidal Prisms (Carpenter, 1901) Modified by the author
As can be seen in Fig. 25, both light paths go through a common objective. The use of a common objective would evolve in the 20th century into the Common Main Objective (CMO) stereomicroscope discussed in more detail in the CMO section of this paper.

As Ferraglio notes,

Despite its useful features, novelty, and production by America’s premier microscope maker of the time, Riddell’s binocular microscope seems to have failed in the marketplace. Only one example survives: Riddell’s own microscope … It seems demand for such a microscope was very low during these early years of microscopy in America.

— (Ferraglio, 2008)

Stephenson Stereomicroscopes

Fortuitously, the basic design of Prof. Riddell’s microscope was discovered independently, several decades later, by John Ware Stephenson, R.M.S., F.R.A.S of England. Stephenson was elected to the Council of the Royal Microscopical Society and was its Treasurer c. 1880s. He was also a contributor to the Encyclopaedia Britannica.

One of Stephenson’s modifications used Riddell-style prisms (possibly made by Browning), that were much smaller, and were mounted inside a small tube that projected from the microscope and extended into the objective housing in close proximity to the back element of a lens. That is, the prism and its housing stayed with the microscope and not with the objectives. The Riddell-Stephenson design, with various modifications, was used in some 19th and early 20th century British binocular microscopes. These microscopes were produced by various British makers, including Ross, John Browning, Charles Baker of London, and James Swift & Son of London. Ross is the maker least commonly seen, while J. Swift stereo instruments are more common. (Ferraglio, 2008).
See, Kreindler and Goren (Kreindler, March 2011) for the differences between the unrelated Swift companies in England and the US.

A picture of a Stevenson style binocular microscope, made by Swift, can be found in the Truman G. Blocker, Jr. History of Medicine Collections, Fig. 1.020, (Blocker 2012), as well as in the article, *Introduction to Stereomicroscopy* (Fig. 1.), at NikonU (NikonU, undated)

As will be seen in a later section, the Riddell-Stephenson design can be considered the precursor of the modern common main objective (CMO) stereomicroscope.

Figure 26. George E. Davis. *Practical Microscopy*, 1882

A picture of a Riddell-Stephenson binocular made by John Browning, along with a brief discussion is given in Davis, Fig. 26 (Davis, 1882). Figures 27 and 28, taken from Davis, shows this microscope and its prisms. Fig 28 shows one of the implementations of this design by Swift and Son.
Figure 27. Riddell-Stephenson stereo binocular microscope made by Browning.
(Davis, 1882)

Figure 28. Prism designs for the Stephenson Stereo Binocular shown at left. Modified and colored from Davis (Davis, 1882) by the author.
Figure 29. Riddell-Stephenson style stereomicroscope made by J. Swift and Son
Wenham Stereomicroscopes

It was the development of the Wenham binocular, Figs. 30 through 35, which led to the rapid distribution of stereomicroscopes. [Author aside: It should be mentioned that Francis Wenham's interests were many. He was a microscopist, but his contributions to aviation were many and profound. He received high praise from Wilbur Wright]. In 1870, after the death of Thomas Ross, Wenham joined the maker Ross as a consultant.

Some insight into Wenham's view of his binocular microscope may be gained from his writings. The following except predates Greenough's microscope design, c. 1886, discussed later in this paper.

I have been frequently asked why I have not termed my binocular the "Stereoscopic Microscope?" I may reply that the prevailing idea of stereoscopic vision is more connected with the combined effects of two separate objects, or pictures, than the solid appearance of a single body, having bulk or thickness. What I should term a "Stereoscopic Microscope" would be literally two microscopes, with their object-glasses, placed side by side, like an opera glass, with similar adjustments for the distance between the eyes. If such an instrument were furnished with erecting-glasses and draw-tubes, for varying the magnifying power, only one power of object-glass would be requisite, and I have no doubt that in many applications it would be found serviceable, as for the detection of forged trade-marks, &c, and irregularities of pattern.

— (Wenham, 1861).

Wenham suggests, in the above 1861 quote, that magnification changes could be made using "draw tubes", rather than by using eyepieces or objectives of different power, as is done today.

As can be seen in Fig. 30, Wenham used a single prism, different from that used in Riddell's microscope, to reflect half the semicircle of light entering the objective into an angled tube. The remaining half of the semicircle of light passed unobstructed, and without reflection by Wenham's prism, into the other eyepiece tube.

As the images from the objective are reversed, as in a normal microscope, to obtain a stereoscopic effect, the image from the right-side of the objective must be sent to the left eye, and the image from the left-side of the objective to the right eye. If these images had not been redirected the resultant image would have been pseudoscopic, as in the binocular microscope of Père d'Orleans, Fig. 8.
The use of Wenham binoculars for stereoscopic examination has a number of difficulties in addition to the reduced image illumination obtained with a single small aperture objective. (1) Relief is naturally reduced as most objects are cut into thin sections. (2) These microscopes have a relatively short working distance, which mean that many objects cannot be placed "whole" under the objective. (3) Since these are designed for use with thin sections and cover slips, potential relief is further reduced (4) Spatial separation of images is relatively small and effects relief. (5) Depth of field is quite shallow with higher magnification. (5) Due to the small diameter of the back lens of high power objectives, compared to the size of the Wenham prism, images are somewhat distorted by the edge of the prism at high powers. (6) Relief seen at low powers is significantly diminished, if present at all, when high powers are used.

Wenham binocular microscopes have prisms that can be slid out of the optical path, Fig. 31b. This allows more light into the eye when high magnification objectives are used. However, when this is done the binocular microscope becomes a non-stereo monocular microscope, with all the light from the objective going into a single body tube. That is, the image is 'flat'.

At low powers, Wenham binocular microscopes show relief, but not as significantly as modern stereomicroscopes, and their working distances are insufficient to accommodate larger whole specimens. As the light paths are not similar, the image brightness is different for the left and right eyepieces. This can make these microscopes more fatiguing to use.

Nonetheless, the Wenham binocular microscope, in various versions, dominated the production of British, and American, binocular microscopes in the 19th century. Most major British makers had several Wenham models, usually bench top versions.

Although relatively uncommon, Wenham binocular microscopes were also made as field portable microscopes. Fig. 33 shows a Beck Wenham that folds for traveling and stores in a luggage-like case for field trips.
Fig. 34 shows a large J. Swift Wenham binocular microscope, over 23 inches tall. This maker's Riddell-Stephenson style stereomicroscope is shown in Fig. 29. This microscope is typical of the bench top Wenham's that were popular acquisitions for the British aristocracy. It was relatively expensive, and available with many accessories. Its cost restricted it to those with considerably more wealth than average. As can be seen, it makes an impressive display, but would have exceeded the budget of most scientists (unless independently wealthy).

Fig. 35 shows another large Wenham. Here made by a more obscure maker of Wenham's binocular microscopes, B. Cooke and Son. This, Hull England, company sells microscopes today. However, the company is not discussed in Bracegirdle (Bracegirdle, 1996). This Wenham is relatively heavy. It weighs almost 14-1/2 pounds, and is approximately the same height as the J. Swift Wenham shown earlier. It is also typical of the bench top Wenhams that were popular in the 19th century.
Figure 30. Wenham binocular light path

Figure 31 - Crouch Wenham Binocular

a. Left: Complete view

b. Above: Close-up with Wenham prism moved out of light path
Figure 32. Collins Ladderback Wenham Binocular

Wenham Prism
Figure 33. Beck field portable Wenham stereo binocular with its unusual travel case
Figure 34. J. Swift large Wenham stereo binocular, over 23 inches tall as shown
Figure 35. J. Large Wenham stereo binocular sold by B. Cooke and Son
Wenham English binocular microscopes are easily identified by their one straight and one angled tube, Figs. 31 - 35. Wenham's binocular microscopes were suited to the longer English tube length of 10 inches. However, this prism design did not work well for continental microscopes with their shorter tube lengths, slightly over six inches.

The wide acceptance of the Wenham's binocular design may not have been due to its stereoscopic capabilities but its being a binocular, instead of a monocular, microscope. Using both eyes, as occurs in a binocular microscope, is usually more comfortable for users. Wenham's are quite attractive in brass, so they appealed to aristocratic amateurs, who at the time, were the purchaser's of the most expensive instruments, and took pleasure in their display.

The stereoscopic limitations of Wenham binocular microscopes were, in part, the motivation for the development of the modern low power stereomicroscope, where whole objects can easily be seen in outstanding (some would say spectacular) three-dimensional relief. Most objects can be quickly placed under a stereomicroscope (i.e., without thin section preparation or staining) for examination. An object's image is not reversed by a stereomicroscope. That is, moving an object to the left moves its image to the left, and moving an object downward moves its image downward. Thus, "abc" seen under a stereomicroscope appears as "abc".

As noted, the Wenham binocular presents dissimilar light paths to each eye. Light not going through the prism provides relatively greater intensity to its eyepiece than light traveling through the prism does to its eyepiece. Thus, the Riddell-Stephenson design, rather than the Wenham design, should be considered the predecessor of modern Common Main Objective (CMO) stereomicroscopes. A discussion of CMOs is given later in this paper.

Wenham's prism design proved inappropriate for continental instruments. So, other style stereomicroscopes were developed in Europe, initially by the French firm Nachet, (Moe, 2004).

The next Part of this paper starts the discussion of Greenough stereomicroscopes.
Combining References and End Notes

(This list includes references/notes for the full paper. However, additional references may be added in later parts)

AO American Optical, Scientific Instrument Division
- AO (1962) *Cyclopic World’s Most Modern ... Versatile ... and Complete Line of Stereoscopic Microscopes!*, September, 1962
- AO (Undated-1) *NEW 2X Swing-Out Auxiliary Lens For All Series Stereoscopic Microscopes*

Bausch & Lomb Optical Co., (Undated-1) *Bausch & Lomb StereoZoom Microscopes*

Blocker (2012) Blocker History of Medicine
http://ar.utmb.edu/ar/Library/BlockerHistoryofMedicineCollection/BlockerHistoryofMedicineArtifacts/MicroscopeCollection/MicroscopesMakersandTheirInstruments/MicroscopeSwift/tabid/877/Default.aspx

Bryant, Dr. Mark L., (2012) The author's thanks to Dr. Bryant and his staff for permission to photograph their Topcon slit lamp.

Cherubin, d’Orleans. Père, (1677), *La Dioptrique Oculaire ou La vision parfait ou le concours des deux axes de la vision en un seul point de l’objet*, Paris: S. Mabre-Cramoisy
del Cerro, Manual (2012) The author's thanks to Dr. del Cerro for his kindness in reviewing the section on ophthalmology, and his helpful suggestions. However, all content is the sole responsibility of the author.

Doherty, Glenn (2012) The author's thanks to Mr. Doherty, Support Representative, Carl Zeiss Microscopy, LLC for his help in identifying start and end manufacturing dates for some Zeiss stereomicroscopes.

The author's thanks to Dr. Ferraglio, a leading authority on Prof. Riddell's microscope and its successors. Dr. Ferraglio was kind enough to provide the author with reprints of his papers, as well as helpful comments on an earlier version of this paper. However, all content here is the sole responsibility of the author.

Fox, Deborah (2003) *The Great Exhibition (How Do We Know About?)* Heinemann Library

Goren, Yuval, The author's thanks to Dr. Goren for the many discussions we have had on historical microscopes, and his emphasis on the importance of setting microscopes in their historical context.

Gubas, Lawrence J., (private correspondence, 2012) The author's thanks to Mr. Gubas for information on Zeiss instruments and employees, and pointers to Zeiss materials.

Journal of the Society of Arts, Vol XXXIV, (November 1886). London: George Bell and Sons, for the Society of Arts, Fig. 16, p 1014

Kreindler, R.J. and Yuval Goren, (March 2011) *Comparison of the Swift FM-31 Portable Field Microscope and an FM-31 Clone,* Micscape, Figs. 11, 12, and 13

Kreindler, R.J. and Yuval Goren, (May 2011) *Baker's Traveller's Microscope,* Micscape

Kreindler, R.J. and Yuval Goren, (November 2011) The TWX-1 Folded-Optics Microscope, Micscape

Kreindler, R.J. (2012) The author worked in Silicon Valley for a number of years and saw the extensive use, and occasional abuse, stereomicroscopes in high-tech companies were subjected to.

Lau, Berndt-Joachin (2012) The author's thanks to Herr Lau of Carl Zeiss Microscopy GmbH for his information on Zeiss GDR microscopes, and Zeiss' situation in Germany after WWII.

Leica / Leitz
- Leica (1994) *Wild M3B – M3C – M3Z Stereomicroscopes for universal use*
- Leica (1999) *Leica MZ125 Modular high-performance stereomicroscope with 12.5:1 zoom*
- Leica (2002) *Leica MZ75 Modular high-performance stereomicroscope with zoom 7.9:1*
- Leica (2002) *Leica MZ95 Modular high-performance stereomicroscope with 9.5:1 zoom*
- Leica (2002) *Your Vision – Our Mission Hig-tech stereomicroscopes MZ16 and MZ16 A Global Innovations: see 0.6 micron structures and sane 80% more time with motorized zoom nd automatic measurement*
- Leica (2003) *High-performance optics with perfect documentation. Leica Z6 APO and Z16 APO, the superlative modular 6.3:1 and 16:1 zoom systems for inspection, system integration, machine vision and more*
- Leica (2003) *First-Fast-Fluorescence Leica MZ16 FA: The World's Best Fluorescence Stereomicroscope* Motorized, automated, fully apochromatic, display, connection to PC, 16:1 zoom, 115x magnification, up to 840 Lp/mm resolution
- Leica (2003) *High-performance optics with perfect documentation Leica Z6 APO, the superlative modular 6.3 and 16.1 zoom systems for inspection, systems integration, machine vision and more*
- Leica (2004) *Leica S8 APO StereoZoom®Leica S8 APO: fully apochromatic stereomicroscope with 8:1 zoom, 300 Lp/mm resolution and peerless 70 μm depth of field for research, medicine and education*
- Leica (2004) *No. 1 in 3D Fluorescence Leica MZ16 F –Fully Apochromatic Fluorescence Stereomicroscope with 16:1 zoom and patented TripleBeam®fluorescence technology*
- Leica (2005) *Leica M55 and MZ6 The most flexible routine stereomicroscopes in the world*
- Leica (2005) *Leica M-Series Stereo-microscopes A completely modular system for all applications*
- Leica (2006) *Leica M55 and MZ6 The most flexible routine stereomicroscopes in the world, 2nd Brochure*
- Leica (2006) *Leica DFC290 Digital FireWire Camera for Analysis and Documentation*
- Leica (2006) *Leica M55 and MZ6 The most flexible routine stereomicroscopes in the world, 2nd Brochure*
- Leica (2007) *Step Beyond Infinity. The new Leica M165 C and M295 C are a step into a new dimension of stereomicroscopy*
- Leica (2008) *Discover entirely new worlds of research. Leica M165 FC and M205 FA fluorescence stereomicroscopes*
- Leica (2009) *Leica M50 & M80 Routine stereomicroscopes combine legendary Leica Microsystems optical quality, ergonomic design, and an extensive range of accessories*
- Leica (2009) *Our Brand Leica Microsystems*
- Leica (2012) *Leica StereoZoom®- The lean line Proven, compact, low-cost*
- Leitz Wetzlar (Undated-1) *Largefield Stereo-microscopes Instructions*
- Leitz Wetzlar (Undated-2) *Leitz Stereoscopic Microscopes*
Stereo Microscopy

- Leica (Undated-1) *Product Guide for Stereomicroscopes Living up to Life*
- Leica (Undated-2) *Leica Z6 APO / Leica Z16 APO User Manual*
- Leica (Undated-3) *Illumination Handbook for Leica Stereomicroscopes V1.0*

Maertin, Rainer (2012), www.photosrsenal.com. The author's thanks for his permission to use the photo of the Brewster type stereo viewer.

Meiji Techno Co. Ltd. (Undated) *Stereo Microscopes EM Series*

Nikon Microscopy U (undated) *Introduction to Stereomicroscopy* states, "The first modern stereomicroscope was introduced in the United States by the American Optical Company in 1957. Named the Cycloptic®, this breakthrough design...".

Although this was a landmark in American stereomicroscopes, the common objective concept was first used by Riddell in 1850s, and a common large objective was later implemented by Zeiss in their Citoplast, considerably before the Cycloptic® was introduced.

Nikon Corporation
- Nikon (1970) *Nikon microscope price list, January 1, 1970*
- Nikon (2007) *Nikon SMZ445 and SMZ460*
- Nikon (2010) *Optical Systems: Parallel-optics type (zooming type) and Greenough type (zooming type)*

NYMS (1957) The author's thanks to the NYMS for permission to reprint the advertisement from their 1957 Newsletter (See Pollinger, 1957)
Olympus Corporation
- Olympus (Undated-1) *Instructions Instructions SZ3060, SZ4045/SZ4060, SZ6045/SZ1145 Zoom Stereo Microscope*
- Olympus (Undated-2) *Models X/X-Tr*
- Olympus (Undated-3) *Olympus SZH Zoom Stereo Microscope System*
- Olympus (Undated-4) *Olympus SZH Zoom Stereo Microscope System*
- Olympus (Undated-5) *Research Stereomicroscope System SZX SZX12/SZX9*
- Olympus (Undated-6) *Models X/X-Tr*
- Olympus (Undated-7) *Olympus SZ Series Zoom Stereo Microscopes*
- Olympus (Undated-8) *Olympus SZ H10 Zoom Stereo Microscope System*
- Olympus (Undated-9) *Olympus Series VM Stereoscopic Microscope*
- Olympus (Undated-10) *Olympus Stereo Microscopes Instruction Manual VM Series*
- Olympus (Undated-11) *3.2 Megapixel Olympus Q-Color3 tm Imaging System*

Orlowski, Kristen and Dr. Michael Zöllfel (private correspondence, 2012)
- The author's thanks to both Kristen Orlowski, Product Marketing Manager, Light Microscopes, Carl Zeiss Microscopy, LLC and Dr. Michael Zöllfel, Carl Zeiss Microlmaging Gmb, Jena, Germany for information and materials they provided regarding Zeiss history.

Ozment, Randall R. (2012) The author's thanks to Dr. Ozment for permission to photograph his Haag-Streit slit lamp, and for his explanation of its use in clinical practice.

Pollinger, Mel. (1957) The author's thanks to Mr. Pollinger, Editor NYMS Newsletter for permission to reprint the advertisement from The New York Microscopical Society (NYMS) Newsletter of 1957 (See NYMS, 1957)

RMS (1898) *Journal of the Royal Microscopical Society*, Volume 18, pp 469-471

Schulze, Fritz, (2011, 2012), The author’s thanks to Mr. Schulze, former head of the *Historical Microscopical Society of Canada* for his extensive knowledge of Zeiss microscopes which he kindly shared, and our extended exchanges on stereomicroscopes.

Schwabe, Ms. Marte (2012) The author’s thanks to Ms. Schabe, Assistant to Dr. Wimmer, *Carl Zeiss Archiv* for her assistance (see Wimmer below).

Serfling, Thomas (2012), The author’s thanks to Herr Serfling, Carl Zeiss Microscopy GmbH for permission to use his photograph with the Anianus stereomicroscope.

Stanley, Jay (2012), The author’s thanks for permission to use photos from his web site *Classic Optics*.

Thuringian Newspaper (2011) *Optisches Museum birgt wahre Raritäten* (Newspaper article about the Anianus stereomicroscope), September 07, 2011

Watson, W. & Sons, Ltd. (1936) *1936 Microscopes for Students and Research (Catalog)*

Walker, David (undated) . This is a short no frills introduction to stereomicroscopes. http://www.microscopy-uk.org.uk/dww/novice/choice3.htm

Wheatstone, Charles. (1838) *Contributions to the Physiology of Vision.—Part the First. On some remarkable, and hitherto unobserved, Phenomena of Binocular Vision, June 21, 1838*

Wild Heerbrugg Ltd.
- Wild Heerbrugg Ltd. (1964) *Wild M5 Stereo-microscope. Instructions for use*
- Wild Heerbrugg Ltd. (1972) *Wild M4/M4A Stereomicroscope. Instructions for use*
- Wild Heerbrugg Ltd. (1973) *Wild M7 Zoom Microscope. Instructions for use*
- Wild Heerbrugg Ltd. (1975) *Wild M8 Zoom Stereomicroscope. Instructions for use*
- Wild Heerbrugg Ltd. (1975) *Wild M5 Stereomicroscope*
- Wild Heerbrugg Ltd. (1977) *Wild MTR27 Regulating transformer 12V/100VA*
- Wild Heerbrugg Ltd. (1980) *Wild M3 Stereomicroscope. Instructions for use*

Withering, William (1765) *An Account of the Foxglove and Some of Its Medical Uses.* Birmingham: M. Swinney

Wimmer, Wolfgang. The author's thanks to Dr. Wimmer's office at the *Carl Zeiss Archiv* Jena, Germany for their help.
Zeiss, (Microscopy, LLC, MicroImaging Gmb, Jena)
- Zeiss (1934) Zeiss 1934 catalog, English version
- Zeiss (1937) Zeiss catalog
- Zeiss (1951) Mikroskope für Wissenschaft und Technologie Catalog
- Zeiss(1984-GDR) GSM Stereomicroscopes Publication # 30-735-1
- Zeiss (Undated) Citoplast brochure, East Germany
- Zeiss (Undated GDR-2) GSM GSZ Stereomicroscopes
- Zeiss (Undated History) - Two Zeiss Factories in Germany,
 http://corporate.zeiss.com/history/en_de/corporate-history/at-a-glance.html#inpagetabs-4
- Zeiss (Undated) Opton catalog,, West Germany
- Zeiss (Undated) Stemi DR, Stemi DV4, Stemi Stereomicroscopes brochure

Zöllfel, Michael (2012), see Orlowski above

©2011 - 2014 Text and photographs (except as noted) by the author.

The author welcomes any suggestions for corrections or improvements. He has a continuing
interest in stereo, field portable, folded-optics, and unique historical microscopes.

The author can be reached at:

R. Jordan Kreindler: leona111rjk@gmail.com

Published in the online magazine Micscape, February 2014

www.microscopy-uk.org.uk

Please report any Web problems or offer general comments to the Micscape Editor.
Micscape is the on-line monthly magazine of the Microscopy UK web
site at
Microscopy-UK